skip to main content


Search for: All records

Creators/Authors contains: "Leonard, F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Interstellar neutral atoms enter the heliosphere at a relatively slow speed corresponding to the motion of the Sun through the local interstellar medium, which is approximately 25 km s−1. Neutral hydrogen atoms enter from the approximate location of the Voyager spacecraft and are eventually ionized primarily by collision with thermal solar wind ions. An earlier analysis by Hollick et al. examined low-frequency magnetic waves observed by the Voyager spacecraft from launch through 1990 that are thought to arise from the scattering of newborn interstellar pickup H+and He+. We report an analysis of Voyager 1 observations in 1991, which is the last year of high-resolution magnetic field data that are publicly available, and find 70 examples of low-frequency waves with the characteristics that suggest excitation by pickup H+and 10 examples of waves consistent with excitation by pickup He+. We find a particularly dense cluster of observations at the tail end of what is thought to be a Merged Interaction Region (MIR) that was previously studied by Burlaga & Ness using Voyager 2 observations. This is not unexpected if the MIR is followed by a large rarefaction region, as they tend to be regions of reduced turbulence levels that permit the growth of the waves over the long time periods that are generally required of this instability.

     
    more » « less
  2. Abstract

    Skyrmions are widely regarded as promising candidates for emergent spintronic devices. Dzyaloshinskii–Moriya interaction (DMI) is often critical to the generation and manipulation of skyrmions. However, there is a fundamental lack of understanding of the origin of DMI or the mechanism by which DMI generates skyrmions in magnetic bilayers. Very little is known of the material parameters that determine the value of DMI. This knowledge is vital for rational design of skyrmion materials and further development of skyrmion technology. To address this important problem, we investigate DMI in magnetic bilayers using first principles. We present a new theoretical model that explains the microscopic origin of DMI in magnetic bilayers. We demonstrate that DMI depends on two parameters, interfacial hybridization and orbital contributions of the heavy metal. Using these parameters, we explain the trend of DMI observed. We also report four new materials systems with giant DMI and new designs for magnetic multilayers that are expected to outperform the best materials known so far. Our results present a notably new understanding of DMI, uncover highly promising materials and put forth pathways for the controlled generation of skyrmions.

     
    more » « less
  3. Abstract The EXO-200 experiment searched for neutrinoless double-beta decay of 136 Xe with a single-phase liquid xenon detector. It used an active mass of 110 kg of 80.6%-enriched liquid xenon in an ultra-low background time projection chamber with ionization and scintillation detection and readout. This paper describes the design and performance of the various support systems necessary for detector operation, including cryogenics, xenon handling, and controls. Novel features of the system were driven by the need to protect the thin-walled detector chamber containing the liquid xenon, to achieve high chemical purity of the Xe, and to maintain thermal uniformity across the detector. 
    more » « less